

Designation: D7500 - 15 (Reapproved 2019)

Standard Test Method for Determination of Boiling Range Distribution of Distillates and Lubricating Base Oils—in Boiling Range from 100 °C to 735 °C by Gas Chromatography¹

This standard is issued under the fixed designation D7500; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ε) indicates an editorial change since the last revision or reapproval.

1. Scope

1.1 This test method covers the determination of the boiling range distribution of petroleum products by capillary gas chromatography using flame ionization detection. This standard test method has been developed through the harmonization of two test methods, Test Method D6352 and IP 480. As both of these methods cover the same scope and include very similar operating conditions, it was agreed that a single standard method would benefit the global simulated distillation community.

1.2 This test method is not applicable for the analysis of petroleum or petroleum products containing low molecular weight components (for example naphthas, reformates, gasolines, diesel). Components containing hetero atoms (for example alcohols, ethers, acids, or esters) or residue are not to be analyzed by this test method. See Test Methods D7096, D2887, or D7213 for possible applicability to analysis of these types of materials. This method is also not suitable for samples that will not elute completely from the gas chromatographic column, leaving residues. For such samples as crude oils and residues, see Test Methods D5307 and D7169.

1.3 This test method is applicable to distillates with initial boiling points above 100 °C and final boiling points below 735 °C (carbon 110); for example, distillates (IBP > 100 °C), base oils and lubricating base stocks.

1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.

1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

2. Referenced Documents

- 2.1 ASTM Standards:²
- D86 Test Method for Distillation of Petroleum Products and Liquid Fuels at Atmospheric Pressure
- D1160 Test Method for Distillation of Petroleum Products at Reduced Pressure
- D2887 Test Method for Boiling Range Distribution of Petroleum Fractions by Gas Chromatography
- D5307 Test Method for Determination of Boiling Range Distribution of Crude Petroleum by Gas Chromatography (Withdrawn 2011)³
- D6352 Test Method for Boiling Range Distribution of Petroleum Distillates in Boiling Range from 174 °C to 700 °C by Gas Chromatography
- D7096 Test Method for Determination of the Boiling Range Distribution of Gasoline by Wide-Bore Capillary Gas Chromatography
- D7169 Test Method for Boiling Point Distribution of Samples with Residues Such as Crude Oils and Atmospheric and Vacuum Residues by High Temperature Gas Chromatography
- D7213 Test Method for Boiling Range Distribution of Petroleum Distillates in the Boiling Range from 100 °C to 615 °C by Gas Chromatography
- E355 Practice for Gas Chromatography Terms and Relationships
- E594 Practice for Testing Flame Ionization Detectors Used in Gas or Supercritical Fluid Chromatography

¹ This test method is under the jurisdiction of ASTM Committee D02 on Petroleum Products, Liquid Fuels, and Lubricants and is the direct responsibility of Subcommittee D02.04.0H on Chromatographic Distribution Methods.

Current edition approved Dec. 1, 2019. Published December 2019. Originally approved in 2008. Last previous edition approved in 2015 as D7500 – 15. DOI: 10.1520/D7500-15R19.

² For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

³ The last approved version of this historical standard is referenced on www.astm.org.

E1510 Practice for Installing Fused Silica Open Tubular Capillary Columns in Gas Chromatographs

2.2 ISO Standard:4

ISO 3170 Petroleum Liquids Manual Sampling

3. Terminology

3.1 *Definitions*—This test method makes reference to many common gas chromatographic procedures, terms, and relationships. For definitions of these terms used in this test method, refer to Practices E355, E594, and E1510.

3.2 Definitions of Terms Specific to This Standard:

3.2.1 *area slice, n*—the area resulting from the integration of the chromatographic detector signal within a specified retention time interval. In area slice mode (see 6.4.1), peak detection parameters are bypassed and the detector signal integral is recorded as area slices of consecutive, fixed duration time intervals.

3.2.2 *corrected area slice*, *n*—an area slice corrected for baseline offset by subtraction of the exactly corresponding area slice in a previously recorded blank (non-sample) analysis.

3.2.3 *cumulative corrected area, n*—the accumulated sum of corrected area slices from the beginning of the analysis through a given retention time, ignoring any non-sample area (for example, solvent).

3.2.4 *final boiling point (FBP), n*—the temperature (corresponding to the retention time) at which a cumulative corrected area count equal to 99.5 % of the total sample area under the chromatogram is obtained.

3.2.5 *initial boiling point (IBP), n*—the temperature (corresponding to the retention time) at which a cumulative corrected area count equal to 0.5 % of the total sample area under the chromatogram is obtained.

3.2.6 *slice rate, n*—the frequency used in sampling (analog) the chromatographic detector signal during an analysis. The slice rate is expressed in Hz (for example integrations or slices per second).

3.2.7 *slice time*, n—the inverse function of the acquisition rate. It is the time duration of each sampling pulse usually expressed in seconds. The slice time is the time at the end of each contiguous area slice.

3.2.8 *total sample area, n*—the cumulative corrected area, from the initial area point to the final area point, where the chromatographic signal has returned to baseline after complete sample elution.

3.3 *Abbreviations*—A common abbreviation of hydrocarbon compounds is to designate the number of carbon atoms in the compound. A prefix is used to indicate the carbon chain form, while a subscripted suffix denotes the number of carbon atoms (for example n-C₁₀ for normal-decane, i-C₁₄ for *iso*-tetradecane).

4. Summary of Test Method

4.1 The boiling range distribution determination by distillation is simulated by the use of gas chromatography. A non-polar open tubular (capillary) gas chromatographic column is used to elute the hydrocarbon components of the sample in order of increasing boiling point.

4.2 A sample aliquot is diluted with a viscosity reducing solvent and introduced into the chromatographic system. Sample vaporization is provided by separate heating of the point of injection or in conjunction with column oven heating.

4.3 The column oven temperature is raised at a specified linear rate to affect separation of the hydrocarbon components in order of increasing boiling point. The elution of sample components is quantitatively determined using a flame ionization detector. The detector signal is recorded as area slices for consecutive retention time intervals during the analysis.

4.4 Retention times of known normal paraffin hydrocarbons, spanning the scope of the test method, are determined and correlated to their boiling point temperatures. The normalized cumulative corrected sample areas for each consecutive recorded time interval are used to calculate the boiling range distribution. The boiling point temperature at each reported percent off increment is calculated from the retention time calibration.

5. Significance and Use

5.1 The boiling range distribution of medium and heavy petroleum distillate fractions provides an insight into the composition of feed stocks and products related to petroleum refining processes (for example, hydrocracking, hydrotreating, visbreaking, or deasphalting). The gas chromatographic simulation of this determination can be used to replace conventional distillation methods for control of refining operations. This test method can be used for product specification testing with the mutual agreement of interested parties.

5.2 This test method extends the scope of boiling range determination by gas chromatography to include distillates (IBP > 100 °C) and heavy petroleum distillate fractions beyond the scope of Test Method D2887 (538 °C).

5.3 Boiling range distributions obtained by this test method have not been analyzed for correlation to those obtained by low efficiency distillation, such as with Test Method D86 or D1160. This test method does not claim agreement between these physical distillations and simulated distillation. Efforts to resolve this question will continue. When successful resolutions of the questions are determined, this test method will be revised accordingly.

6. Apparatus

6.1 *Chromatograph*—The gas chromatographic system used shall have the following performance characteristics:

6.1.1 *Carrier Gas Flow Control*—The chromatograph shall be equipped with carrier gas pressure or flow control capable of maintaining constant carrier gas flow to ± 1 % throughout the column temperature program cycle.

⁴ Available from American National Standards Institute (ANSI), 25 W. 43rd St., 4th Floor, New York, NY 10036, http://www.ansi.org.

6.1.2 *Column Oven*—Capable of sustained and linear programmed temperature operation from near ambient (for example, 30 °C to 35 °C) up to 430 °C.

6.1.3 Column Temperature Programmer—The chromatograph shall be capable of linear programmed temperature operation up to 430 °C at selectable linear rates up to 10 °C/min. The programming rate shall be sufficiently reproducible to obtain the retention time repeatability of 0.1 min (6 s) for each component in the calibration mixture described in 7.5.

6.1.4 *Detector*—This test method requires the use of a flame ionization detector (FID). The detector shall meet or exceed the following specifications in accordance with Practice E594. Check the detector according the instrument manufacturers instructions.

6.1.4.1 Operating Temperature-100 °C to 430 °C.

6.1.4.2 Connection of the column to the detector shall be such that no temperature below the column temperature exists between the column and the detector. Refer to Practice E1510 for proper installation and conditioning of the capillary column.

6.1.5 *Sample Inlet System*—Any sample inlet system capable of meeting the performance specification in Annex A3 and execute the conditions of Table 2. Programmable temperature vaporization (PTV) and cool on-column (COC) injection systems have been used successfully.

6.2 *Microsyringe*—A microsyringe with a 23-gauge or smaller stainless steel needle is used for on-column sample introduction. Syringes of 0.1 μ L to 10 μ L capacity are available.

6.2.1 Automatic syringe injection is recommended to achieve best precision.

6.3 *Column*—This test method is limited to the use of non-polar wall coated open tubular (WCOT) columns of high thermal stability. Fused silica (aluminum coated) and stainless steel columns with 0.53 mm to 0.75 mm internal diameter have been successfully used. Cross-linked or bonded 100 % dimethyl-polysiloxane stationary phases with film thickness of 0.09 µm to 0.17 µm have been used. The column length and liquid phase film thickness shall allow the elution of C₁₁₀ *n*-paraffin (BP = 735 °C). The column and conditions shall provide separation of typical petroleum hydrocarbons in order

TABLE 1	Reference	Material	5010 ^A
---------	-----------	----------	-------------------

% Dist. m/m	°C	°F	r, °C	R, °C	r, °F	R, °F
IBP	421	789	3	9	5	16
5	476	888	2	4	4	8
10	491	916	2	4	3	7
20	510	950	2	5	3	9
30	524	975	2	5	3	9
40	536	998	2	5	3	9
50	548	1018	2	5	3	9
60	559	1039	2	5	3	9
70	572	1061	2	5	3	9
80	585	1085	2	5	3	9
90	602	1116	2	5	3	9
95	617	1142	2	5	3	9
FBP	661	1223	9	17	16	31

^A Values obtained from including Reference Oil 5010 in the ILS sample set.

TABLE 2 Typical Operating Conditions for Gas Chromatograph

Column length, m	5		
Column internal diameter, mm	0.53		
Column material	Metal		
Stationary phase type	methyl silicone		
Film thickness, µm	0.09 to 0.17		
Initial column temperature, °C	35		
Initial hold time, min	0		
Final column temperature, °C	430		
Final hold time, min	10		
Program rate, °C/min	10		
Injector initial temperature, °C	100		
Injector final temperature, °C	430		
Injector program rate, °C/min	15		
Detector temperature, °C	450		
Make-up gas flow, He or N2, mL/min ^A	20		
Hydrogen Flow, mL/min ^A	45		
Air Flow, mL/min ^A	450		
Carrier gas	He		
Carrier gas flow rate, constant flow, mL/	19		
min			
Sample size, µL ^{A,B}	1.0		
Sample concentration, % (m/m)	2		
Injector	PTV or COC		

^A Consult with the manufacturer's operations manual.

^B Monitor skewness when varying the injection volume.

of increasing boiling point and meet the column performance requirements of A3.2.1. The column shall provide a resolution not less than 2 and not higher than 4 using the test method operating conditions in Table 2.

6.4 Data Acquisition System:

6.4.1 Integrator/Computer System-Means shall be provided for determining the accumulated area under the chromatogram. This can be done by means of an electronic integrator or computer-based chromatography data system. The integrator/computer system shall have normal chromatographic software for measuring the retention time and areas of eluting peaks (peak processing mode). In addition, the system shall be capable of converting the continuously integrated detector signal into area slices of fixed duration (slice mode). These contiguous area slices, collected for the entire analysis, are stored for later processing. A similar collection of contiguous slices is also collected for the blank run. It is necessary that the number of slices collected for sample and blank analysis are the same. The electronic range of the integrator/computer (for example 1 V, 10 V) shall be operated within the linear range of the detector/electrometer system used.

Note 1—Some gas chromatographs have an algorithm built into their operating software that allows a mathematical model of the baseline profile to be stored in memory. This profile is automatically subtracted from the detector signal on subsequent sample runs to compensate for the column bleed. Some integration systems also store and automatically subtract a blank analysis from subsequent analytical determinations.

7. Reagents and Materials

7.1 *Liquid Stationary Phase*—A methyl silicone stationary phase for the column.

7.2 *Carrier Gases*—Helium, of at least 99.999 % (v/v) purity. Any oxygen present is removed by a chemical resin filter. (**Warning**—Follow the safety instructions from the filter supplier.) Total impurities not to exceed 10 mL/m³. Helium or Nitrogen (99.999 %) can also be used as detector makeup gas.